| 1. | To see what error was engendered in the process, we now allow ni to differ from ne and use the linearized poisson equation . 为了研究在这个过程中引起了多少误差,我们让ni与ne不相同,并用线性化的泊松方程。 |
| 2. | The linear triangular element method of the poisson equation 方程的线性三角元法 |
| 3. | Method of undetermined function for finding special solution to poisson equation 方程特解的待定函数解法 |
| 4. | Numerical solution of poisson equation with non - uniform mesh finite difference scheme 求解双曲守恒律的均匀二阶差分格式 |
| 5. | Analysis for two - dimensional finite element preconditioned spectral element method of the poisson equation 方程谱元法有限元预条件分析 |
| 6. | According to the basic idea of finite element method constructs computer procedure to solve the poisson equation 基于有限元法的基本思想构造计算机程序用于求解泊松方程。 |
| 7. | And a new numerical charge - sheet model for sic mos inversion layers is presented based on an numerical solution of a one - dimension poisson equation 文中还提出了一个新的sicmosfet反型层薄层电荷数值模型。 |
| 8. | Finally , we suggest an algorithm and compute the approximate eigenvalue of poisson equation in square and l - shape domains , then we analyse the approximate eigenvalue 最后构造算法,计算方形与l形区域下的poisson方程的近似特征值,并对数据进行分析,验证了理论的正确性。 |
| 9. | The momentum equations are integrated in time using the four - stage explicit jameson runge - kutta algorithm and discretized in space using fourth order accurate compact scheme as well as the pressure poisson equation 动量方程的时间导数采用四步jamesonrunge - kutta法,空间导数和压力poisson方程均采用四阶高精度紧致格式。 |
| 10. | In this dissertation , the main contents axe the anisotropic nonconfonning finite element methods with moving grid for nonstationary stokes problem and the high accuracy analysis of nonconfonning finite element methods for poisson equations 本文的主要内容是讨论发展型stokes方程变网格各向异性非协调有限元分析和poisson方程非协调有限元的超逼近性质和整体超收敛性质。 |